Int. J. Heat Mass Transfer.
Printed in Great Britain

Vol. 29, No. 8, pp. 1071-1078, 1986

Microscales of turbulence and heat transfer
correlations
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Abstract—The small-scale structure of forced, turbulent flows developed after Taylor and Kolmogorov is
extended to that of buoyancy-driven flows. A thermal microscale

1+ Pr/*(va®\/*
() (2)

is proposed. Here Pr = v/a denotes the Prandtl number and %, the production of buoyant, turbulent
energy. Three limits of this scale are the Kolmogorov, Oboukhov—Corrsin and Batchelor scales, respectively.
When expressed in terms of the buoyancy force rather than that of the buoyant production (energy), the
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proposed scale becomes

1+ P\ va 7
() i)

Pr

or, relative to a length scale / characteristic for geometry

noll ~ TR

Pr
IIN ~ (i‘;jjg;> Ra

is the fundamental dimensionless number for buoyancy-driven flows and Ra is the Rayleigh number. A
heat transfer model based on this dimensionless number explains why the well-known correlation for

where

natural convection,

Nu ~ Ra",

leads to an exponent less than 1/3 when it is considered for the buoyancy-driven flow between two
horizontal plates.

1. INTRODUCTION

FoLLowING Taylor [1] and Kolmogorov [2], who
respectively proposed an inviscid estimate for the dis-
sipation in isothermal, turbulent flows and an iso-
tropic estimate for the kinematic scales of this dis-
sipation, the small-scale structure of turbulence has
received increased attention. Kolmogorov’s idea was
extended to small scales of a dynamically passive sca-
lar contaminant in turbulent flow, first by Oboukhov
[3] and Corrsin [4] for small Prandt] fluids and later
by Batchelor [5] for large Prandtl fluids. These scales
have been used by Priestley [6] to model the turbulence
in the lower atmosphere and by Townsend [7] to meas-
ure this turbulence, and by George and Capp [8] and
Delichatsios [9] to model the buoyancy-driven, tur-
bulent flow near a vertical plate.

Despite the intensive research on modeling and
measurements on the small scales of turbulent flows,
however, some fundamental aspects of these scales
continue to remain untreated. For example:

1. The difference, if any, between the small scales of
forced and buoyancy-driven flows.

2. The Prandtl number dependence of these scales for
any Prandtl fluid.

3. The use of these scales in the correlation of heat
transfer data.

The objective of this study is to treat these aspects
of scales, and show also the relation between the small
scales of turbulence and the scales of heat transfer.
The study is divided into five sections. Following this
introduction, Section 2 proposes a fundamental
dimensionless number for natural convection ; Section
3 briefly reviews, in terms of this number, the heat
transfer in laminar, natural convection near a wall;
Section 4 originates, in terms of this number, a thermal
microscale and employs it for the heat transfer in
turbulent natural convection near a wall and Section
5 concludes the study.

2. A DIMENSIONLESS NUMBER
FOR NATURAL CONVECTION

The well-known correlation for forced convection
in incompressible and constant property fluids

Nu = f(Re, Pr) 1)
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thermal diffusivity, k/pc
c specific heat
Fy; buoyancy force
F, inertial force
F, viscous force
g  gravitational acceleration
g,  gravitational acceleration vector
Gr  Grashof number, gB AT?/v*
k  thermal conductivity
K  mean kinetic energy
{ a characteristic length for geometry
n  anexponent
Nusselt number, hl/k
Pr  Prandtl number, v/a
g  heat flux
Qu enthalpy flow
Qx conduction heat flux
Ra Rayleigh number, gf ATl /va
Re Reynolds number, pVi/u
fluctuating rate of strain
S, mean rate of strain
T  temperature
u root mean square of velocity fluctuation
u;  velocity fluctuation
U, mean velocity
V' acharacteristic velocity.

Greek symbols
B coefficient of thermal expansion

I, mean thermal transport

NOMENCLATURE

é  momentum boundary layer thickness
d, thermal boundary layer thickness
A difference
£ viscous dissipation
g thermal dissipation
Kolmogorov scale
¢  thermal microscale for Pr > 1
¥ thermal microscale for Pr < 1
0  temperature fluctuation
®  mean temperature
®, temperature of isothermal ambient
A Taylor scale
1 dynamic viscosity
v kinematic viscosity
II, dimensionless number for natural

convection
p  density.
Script symbols

%, mean transport

2  inertial production
%, buoyant production
%, thermal production.

Superscripts
instantaneous value
mean value.

shows the dependence of the Nusselt number Nu on
the Reynolds number Re and the Prandtl number Pr.
Also well known is the fact that Re characterizes the
momentum balance in forced flows, and Pr denotes
the coupling, through enthalpy flow, of thermal bal-
ance to momentum balance. Following the arguments
leading to equation (1), and replacing Re with the
Grashof number Gr, earlier studies presumed

Nu = f(Gr, Pr) 2

for natural convection. Equation (2) ignores the
important fact that, unlike in forced convection, the
momentum in natural convection is coupled, through
buoyancy, to thermal energy. Including this fact, later
studies on natural convection more appropriately
assume, in terms of the Rayleigh number Ra

Nu = f(Ra, Pr) )]

for this convection. For the asymptotic cases of Pr —
o and Pr — 0, equation (3) reduces to

Nu = f(Ra), Pr— oo, 4
and

Nu=f(RaPr), Pr—0. (&)

However, a dimensionless number involving both Ra
and Pr for any Prandtl fluid and representing the heat
transfer in natural convection more explicitly than
equation (3) has apparently remained neglected. The
prime concern of this section is the development of
this number which will prove essential for the descrip-
tion of laminar and turbulent natural convection.
Let the buoyancy-driven momentum balance be

Fy~ Fi+F, (6)

where Fy, F; and Fy denote respectively the buoyant,
inertial and viscous forces. Also, let the thermal energy
balance be

QH ~ Qk @]

where 0y and Qg denote respectively the enthalpy
flow and conduction. Then, from equation (6),

Fy Fy/Fy

F+F,  (F/F)+1 ®)

and from equation (7)

On/Ok- 9
Although the force ratios of equation (8) and the
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energy ratio of equation (9) are dimensionless, they
depend on velocity which is a dependent variable in
buoyancy driven flows. For example

Fy gl F _pVl Qu peVl

~— —_—~ —

F, uVv ’ Fy u -’ Ok k>’

I being a characteristic length, and the other notation
being conventional. Now, combine equation (9) with
equation (8) for a result independent of velocity. Thus

(FB/FV)(QH/QK) - Ra
(F/F)Qx/Qu)+1  Pro'+1

Pr
My ~ (1 +Pr> Ra

which is the appropriate dimensionless number for
natural convection in any Prandtl fluid. Accordingly,
a more explicit relation than equation (3) for heat
transfer in natural convection is

Nu = f(Ily).

or,

(10

(1)

The limits of equation (11) corresponding to Pr —
and Pr — 0, respectively, are equations (4) and (5), as
expected.

Although the existence of IIy has never been
directly shown, the integral solution given by Squire
[10] almost five decades ago for the laminar, natural
convection near a vertical plate leads to an expression
in terms of ITy. Since then the role of Iy in studies
on natural convection appears to be neglected.

Because of its importance to the present study,
Squire’s work is briefly reviewed here following the
dimensional arguments of Rukenstein [11] and Arpaci
and Larsen [12]. Let the momentum balance be

u u
U-+vo

I 52~gﬁAT

(12)

o being the thickness of the momentum boundary

layer, [ a length characterizing the geometry. Also, let
the thermal energy balance be

0 0

1T

J, being the thickness of the thermal boundary layer.

Now, solve equation (13) for velocity,

I
u~ aé—g. (14)

(13)

Insert equation (14) into equation (12), neglect by
following Squire the shear stress at J, relative to that
at the boundary (Fig. 1), and assume

6 ~ 59. (15)

Thus, from equations (12), (13) and (14),

l a\ gBAT
ag<1+;>~ va

1073

Actual Velocity

\\\3\\\\\

DR
ANNANNNNNN

&
5

3

F1G. 1. Squire model for velocity of natural convection.

or, in terms of Iy,

i
=~ II{* ~ Nu.

[}

(16)

The next section is devoted to a thermal microscale in
terms of ITy.

3. A THERMAL MICROSCALE

Following the usual practice, decompose the instan-
taneous velocity and temperature of a buoyancy-
driven, turbulent flow into a temporal mean (denoted
by capital letters) and fluctuations

4,=U+u, and §=0+06,

and let U, and © be statistically steady.

For this flow, the balance of the mean kinetic energy
of velocity fluctuations yields (see, for example, Ten-
nekes and Lumley [13])

0K 09,
— = — 17
’6xj axj +gg+.@ & ( )
where
K= Yuy

is the mean kinetic energy,

2,

7

= sz_u,+ %u,Tiu,—Zvu,-su
is the mean transport (turbulent flux),
Py = —gjaj_g/ @,
is the buoyant production,
P =—uusS,
is the inertial production, and
e= Zv%

is the dissipation of turbulent energy. Here g, denotes
the vector acceleration of gravity and @, a charac-
teristic mean temperature to be explained later.

Also, the balance of the root mean square of tem-
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perature fluctuations results in

F; -
Uz (30%) =— 6‘5+93—89,

! 0x, ax,

18
where

I 0 . —
I;= %quj—aa; ;6%
is the mean thermal transport (turbulent thermal
flux),
- 00
.% = — u,0 6_)61
is the thermal production, and

o6 a0

gg=a—— —
ox, Ox;

is the thermal dissipation.

For a homogeneous pure shear flow (in which all
averaged quantities except U, and © are independent
of position and in which S; is a constant), equations
(17) and (18) reduce to

(—%)=2+(—¢) (19)

and

Py = &. 20)

Equation (19) states that a part of the buoyant pro-
duction is converted into inertial production while the
rest of it is dissipated.

Under isotropy, equations (19) and (20) lead, on
dimensional grounds, to

o ou?
P~ 1)
N
and
62 0?
U—~a— 22
ne M (2)

where 5 is the Kolmogorov scale and 7, is a thermal
microscale. A buoyancy-driven flow, say, the natural
convection above a heated, horizontal plate is
unstable except for a thin, viscous layer next to the
plate (the Rayleigh-Taylor instability). Under tur-
bulent conditions, the thickness of this layer may be
assumed to be #. In terms of the simple intuitive
models developed by Corrsin {14] and Tennekes [15],
this dissipation may be estimated as v(u’/n?) (Fig. 2).
Similarly, the thermal dissipation is to be estimated
as a(6%/n).

Now, following Squire’s postulate for heat transfer
in buoyancy-driven, laminar flow [equation (15) and
Fig. 1], assume

N~ N 23)

That is, the appropriate length scale for equation (21)
is 7, when this equation is to be considered for heat
transfer. Hereafter, equation (23) is assumed to
characterize a buoyant sublayer. Accordingly, letting
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FIG. 2. Stable and unstable Tennekes vortex.

1 — s in equation (21) and inserting « obtained from
equation (22) into this result yields for any Prandtl

fluid
1+Pr 1/4 Va2 1/4
~ — 24
Ne ( Pr ) 7)) (24)
or, alternatively,
1/4
nE~ (1+Pr)' oy (25)
P

1o being convenient for fluids with Pr > 1 and n for
fluids with Pr < 1.
Now, it is a simple matter to show that

vaZ /4
Am, ~(,,> 26)
and
lim 20 27
which implies, in view of equation (19),
P > E. (28)
Then, from equations (26) and (28),
. va?\'*
Jim 55— 13 ~ <T> 29

which is the scale previously introduced by Batchelor

[5]. Also
& /4
1 * —_
,!:90"8*@3) G0
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and

lime—0
Pr—0

which implies, in view of equation (19),

P> P @31
and in a viscous layer much thinner than 7,
P ~&. (32)

From equations (30), (31) and (32)

23\
lim 7]*-’ 7]" ~|—
Pr—0 o ¢ F

which is the scale introduced by Oboukhov (3) and,
independently, by Corrsin [4]. Finally, when Pr ~ 1,
because of the equipartition of buoyant production
into inertial production and viscous dissipation,
equation (19) becomes

Py ~ 28

pH\4
lim fon~|—
A0 Mo, e = 11 p

which is the celebrated Kolmogorov scale [2].

To date the relation between the small scales of
turbulence and the scales used in the correlation of
natural and forced convection data appears to remain
unnoticed. To demonstrate this relation, return to the
small scale proposed for buoyancy-driven flows,

(33)
and

14 Pri/*/va*\'*
o ~ ( = ) 7 @4

and assume, on dimensional grounds,
Py ~ gub|®,. (349

Let ®, be the temperature of the isothermal ambient.

Noting
0;'=§ (35)

B being the coeflicient of thermal expansion, rearrange
equation (34) as

Po ~ gufd 36)
or, with the velocity obtained from equation (22),
u~ afne
as
Py ~ gaPoine. (37

Insertion of equation (37) into equation (24) yields,
after some rearrangement,

1+ Pr\3( va \/?
(5 i)

Further, assuming the buoyant sublayer to control
heat transfer, let

(38)

9~ AT (39)
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AT being the imposed temperature difference between
the wall and ambient. Thus, equation (38) becomes,
in terms of equation (39),

14+Pr\3( va \'*
"”( Pr ) (gﬂAT>

or, in terms of a characteristic scale for geometry, /,

(40

1+ Pr\/3
LN ( = ’) RV ~TRY ()
where
_ gBATP
Ra = va

is the Rayleigh number.

In summary, the small (or micro) scales of tur-
bulence are also the scales characterizing the heat
transfer in buoyancy driven flows. The apparent
difference in these scales, as demonstrated by the ther-
mal scale proposed in this section, comes from the
fact that the turbulence scale given by equation (24)
is in terms of the buoyant (production of) energy
while the equivalent heat transfer scale given by equ-
ation (40) is in terms of buoyancy (force). The next
section is devoted to a heat transfer model for buoy-
ancy-driven flows to be based on the proposed scale.

4. HEAT TRANSFER

With the definition of heat transfer coefficient A,
and that of Nusselt number Nu,

Nu = Geonv - (qcond)wnll ( 42)

Gcond Gcond

and with the assumption that near a wall the con-
duction in buoyancy-driven, turbulent flows is char-
acterized by thickness of the buoyant sublayer,
hl  k(AT/ng) 1
U= — ~ ——— ~—
k  kQATI) 7,
where k is the thermal conductivity of the buoyant
fluid.

Now, combining equation (42) with equation (41),
and assuming the heat transfer in buoyancy-driven,
turbulent flow to be controlled by the buoyant sub-
layer

(43)

Nu ~ TIY2. (44)

The limits of equation (44) for Pr—0, Pr— 1 and
Pr— o0

lim Nu ~ (RaPr)'/?
Pr—0

lim Nu ~ Gr'/?
Pr—1

lim Nu ~ Ra'?

Prooo

(45)

Gr being the usual Grashof number, are well known.
In the literature, casual use of equation (45) for Pr > 1
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fluids is somewhat surprising. Exceptions are the work
of Churchill [16] and the correlation for vertical cavi-
ties suggested by Catton [17].

Attempts for correlating experimental data for
Pr = 1 fluids with equation (45) sometimes lead to an
exponent less than 1/3 for the Prandtl number. Also,
there appears to be no agreement among exper-
imentalists on the numerical value of this exponent.
Equation (44) balanced with equation (45)

Nu ~ TTY{?

P 1/3
~ <1—+—’P—r) Ra"’ ~ R,  (46)

clearly shows that
n=n(Pr)y< 1/3

and explains the reason for disagreement among
experimentalists on the numerical value of n.

A preliminary attempt by Arpaci and Kabiri [18]
explains with ITy why some of the assumed (twenty-
seven!) transitions in the buoyancy-driven, turbulent
flow between two horizontal plates do not actually
exist (see Chu and Goldstein [19] and Garon and
Goldstein [20]). A study on these ‘transitions’ with a
two-layer heat transfer model including as well a core
effect is under progress and will be reported later.

5. CONCLUSIONS

An attempt is made in this study to show the
relation between the heat transfer correlations and the
small (micro) scales of turbulence. A thermal micro-
scale depending on the buoyant production of tur-
bulent energy is proposed for any Prandtl fluid. The
limits of this scale for Pr — I, Pr - 0 and Pr — oo are
shown to be the Kolmogorov, Oboukov—Corrsin and
Batchelor scales, respectively. Expressing the pro-
posed scale in terms of the buoyancy (force) rather
than the buoyant production (of energy), an alter-
native form is given for this scale. The buoyant
sublayer which controls the heat transfer is assumed
to be characterized by this scale. A model resting on
the proposed scale is then introduced for heat transfer
in buoyancy-driven flows. The limits of the model for
Pr—1, Pr— 0 and Pr— oo turn out to be the well-
known heat transfer correlations. Also, the model
appears to climinate most of the assumed transitions
in buoyancy-driven flow between horizontal plates.

The small scales of isotropic and anisotropic tur-
bulence are found to be different. The small scales of
homogeneous turbulence are expected to be identical,

ARPACI

in the dimensional sense, to those of nonhomogeneous
turbulence.

It is shown that a simple intuitive heat transfer
model can be constructed without reference to an eddy
diffusivity which does not have any fundamental base.
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FORMULES DE MICRO-ECHELLES DE TURBULENCE ET DE
TRANSFERT THERMIQUE

Résumé—La petite échelle de structure des écoulements forcés turbulents développée aprés Taylor et
Kolmogorov est étendue au cas des écoulements naturels libres. Une microéchelle thermique

14 Pr\Y4 (va?\V*
o~ Pr P_B

est proposée. Ici Pr = v/a représente le nombre de Prandtl et Py la production d’énergie turbulente.
Trois limites de cette échelle sont respectivement les échelles de Kolmogorov, d’Oboukhov-Corrsin et de
Batchelor. Quand elle est exprimée en fonction de la force d’Archiméde plutét que de la production

d’énergie, I’échelle proposée devient
1+Pr\'"( va 7
To~\"pr gBAT) -

Relativement 4 une échelle de longueur 1 caractéristique de la géométrie,
76/l ~ TIRY

n Pr \r
NS \Ix )M

est le nombre adimensionnel fondamental et Ra est le nombre de Rayleigh. Un modele de transfert
thermique basé sur ce nombre adimensionnel explique pourquoi la formule classique

Nu ~ Ra"

conduit & un exposant inférieur a 1/3 quand on considére le mouvement entre deux plans horizontaux.

ou

TURBULENZKENNZAHLEN UND WARMEUBERGANGSBEZIEHUNGEN

Zusammenfassung—Die nach Taylor und Kolmogorow entwickelte Mikrostruktur erzwungener tur-
bulenter Strémungen wird fiir freie Konvektionsstromungen erweitert. Eine thermische Kennzahl

1+ Pr\/* [ va?\14
w(5) ()

wird vorgeschlagen. Darin bezeichnet Pr = v/a die Prandtl-Zahl und % die Erzeugung an turbulenter
Auftriebsenergie. Diese Kennzahl hat 3 Grenzfille: die Kolmogorov-, die Oboukhov—Corrsin- und die
Batchelor-Zahl. Formuliert man die Kennzahl mit Hilfe der Auftriebskraft—anstatt der Auftriebsenergie—

so ergibt sich
1+Pr\3( va \"*
o ~ ( Pr gBA T) ’

oder bezogen auf eine fiir die Geometrie charakteristische Linge 1

nofl ~ TI5 "7,

n Pr \g
NY e

die grundlegende dimensionslose Zahl der Auftriebsstromung und Ra die Rayleigh-Zahl ist. Ein Wir-
meiibergangsmodell, das auf dieser dimensionslosen Zahl basiert, erkldrt, warum die bekannte Korrelation
fiir freie Konvektion

wobeil

Nu~ Ra"

bei Auftriebsstrémungen zwischen 2 horizontalen Platten auf einen Exponenten kleiner als 1/3 fiihrt.
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MHUKPOMACHITABbI TYPBYJIEHTHOCTHU U COOTHOWEHHUA s TENJNTOMEPEHOCA

AunoTauns—TeopHs MeJKkOMaCIITAOHbIX BbIHYXICHHBIX TYpOYyJIEHTHBIX TeueHuil, pa3pabortanHas Teii-
nopoM ¥ KoJIMOropoBbIM, NPUMEHSAETCS K T€YEHUSM, BbI3BAHHBIM NOABEMHOI cuiloi. [peanoxen Ten-

JIOBOW MHKpOMacuITab
1+ PryY* vg®\'*
""‘( P ) <7> ’
r 7B

1ae Pr = v/a yncno lpanaras, a #5—TeHepupoOBaHUE NOObEMHOMN TypOyeHTHO#M IHeprun. Tpems npe-
JenaMH 7Toro maciutaba asnstorcs rpandusl Konmoroposa, Obyxosa—Kopeuna v Bartuenopa, coor-
BeTCTBEHHO. [1pH BbIpaXEeHUH MPEATIOKEHHOro MacluTaba yepes NOAbEMHYIO CHIlY, 4 HE FeHEPUPOBAHUE
NOABEMHOM JHEPTHH, OH MMEET CIICAYIOLIMIA BU

1+ Pr\'3/ va \'?
o Pr gpAT) -

a COOTBC'I'CTBy}OmMﬁ MaclTal anHbl 1, XapaKTCprIﬁ A1 TCOMETPHHU, HAXOAMTCA U3 COOTHOLUCHHNSA ©

'Ia/l ~ n; l,"3'

Pr
Ny~|——]Ra
14+ Pr

asaseTcs PyHIAMEHT4IbHBIM Oe3pa3MepHbIM YHCAOM AU TEYEHUH, BbI3BAHHBIX MOAbEMHON CHIOH, a

Ra-uncio Pones. Moaens TensionepeHoca, OCHOBAHHAS Ha 3TOM 0e3pa3MepHOM dHCE, 0OBACHAET TOT

tdakT, moyemMy XOpOlIO M3BECTHOE BhIPAXKEHWE IS eCTECTBEHHON koHBekuMH, Nu ~ Rd", npuBoauTt K

N0KA34TEJII0 CTENeHu Menee 1/3, Korja paccMaTpHBaeTCs Cly4ad TeYEHHS MEXIy JBYMs FOPH3OHTAJIb-
HBIMH NIACTHHAMH.
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