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Abstract-The small-scale structure of forced, turbulent flows developed after Taylor and Kolmogorov is 
extended to that of buoyancy-driven flows. A thermal microscale 

‘lo N (L?$(?J’ 

is proposed. Here Pr = v/a denotes the Prandtl number and pa the production of buoyant, turbulent 
energy. Three limits of this scale are the Kolmogorov, Oboukhov-Corrsin and Batchelor scales, respectively. 
When expressed in terms of the buoyancy force rather than that of the buoyant production (energy), the 
proposed scale becomes 

&N (!2&!2~‘(2L~’ 

or, relative to a length scale I characteristic for geometry 

qs/l N II; “’ 

where 

Ra 

is the fundamental dimensionless number for buoyancy-driven flows and Ra is the Rayleigh number. A 
heat transfer model based on this dimensionless number explains why the well-known correlation for 
natural convection, 

Nu - Ra”, 

leads to an exponent less than l/3 when it is considered for the buoyancy-driven flow between two 
horizontal plates. 

1. INTRODUCTION 

FOLLOWING Taylor [l] and Kolmogorov [2], who 
respectively proposed an inviscid estimate for the dis- 
sipation in isothermal, turbulent flows and an iso- 
tropic estimate for the kinematic scales of this dis- 
sipation, the small-scale structure of turbulence has 
received increased attention. Kolmogorov’s idea was 
extended to small scales of a dynamically passive sca- 
lar contaminant in turbulent flow, first by Oboukhov 
[3] and Corrsin [4] for small Prandtl fluids and later 
by Batchelor [5] for large Prandtl fluids. These scales 
have been used by Priestley [6] to model the turbulence 
in the lower atmosphere and by Townsend [7] to meas- 
ure this turbulence, and by George and Capp [8] and 
Delichatsios [9] to model the buoyancy-driven, tur- 
bulent flow near a vertical plate. 

Despite the intensive research on modeling and 
measurements on the small scales of turbulent flows, 
however, some fundamental aspects of these scales 
continue to remain untreated. For example : 

1. The difference, if any, between the small scales of 
forced and buoyancy-driven flows. 

2. The Prandtl number dependence of these scales for 
any Prandtl fluid. 

3. The use of these scales in the correlation of heat 
transfer data. 

The objective of this study is to treat these aspects 
of scales, and show also the relation between the small 
scales of turbulence and the scales of heat transfer. 
The study is divided into five sections. Following this 
introduction, Section 2 proposes a fundamental 

dimensionless number for natural convection ; Section 
3 briefly reviews, in terms of this number, the heat 
transfer in laminar, natural convection near a wall; 
Section 4 originates, in terms of this number, a thermal 
microscale and employs it for the heat transfer in 
turbulent natural convection near a wall and Section 
5 concludes the study. 

2. A DIMENSIONLESS NUMBER 
FOR NATURAL CONVECTION 

The well-known correlation for forced convection 
in incompressible and constant property fluids 

Nu = f (Re, Pr) (1) 
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NOMENCLATURE 

thermal diffusivity, k/p 
specific heat 
buoyancy force 
inertial force 
viscous force 
gravitational acceleration 
gravitational acceleration vector 
Grashof number, g/I ATl’/v2 
thermal conductivity 
mean kinetic energy 
a characteristic length for geometry 
an exponent 
Nusselt number, hi/k 
Prandtl number, v/a 
heat flux 
enthalpy flow 
conduction heat flux 
Rayleigh number, g/I AT13/va 
Reynolds number, p VI/p 
fluctuating rate of strain 
mean rate of strain 
temperature 
root mean square of velocity fluctuation 
velocity fluctuation 
mean velocity 
a characteristic velocity. 

Greek symbols 

B coefficient of thermal expansion 

I, mean thermal transport 

P 

momentum boundary layer thickness 
thermal boundary layer thickness 
difference 
viscous dissipation 
thermal dissipation 
Kolmogorov scale 
thermal microscale for Pr > 1 
thermal microscale for Pr < 1 
temperature fluctuation 
mean temperature 
temperature of isothermal ambient 
Taylor scale 
dynamic viscosity 
kinematic viscosity 
dimensionless number for natural 
convection 
density. 

Script symbols 
CZ$ mean transport 
9’ inertial production 
9% buoyant production 
9% thermal production. 

Superscripts 
instantaneous value 
mean value. 

shows the dependence of the Nusselt number Nu on 
the Reynolds number Re and the Prandtl number Pr. 
Also well known is the fact that Re characterizes the 
momentum balance in forced flows, and Pr denotes 
the coupling, through enthalpy flow, of thermal bal- 
ance to momentum balance. Following the arguments 
leading to equation (l), and replacing Re with the 
Grashof number Gr, earlier studies presumed 

Nu = f (Gr, Pr) (2) 

for natural convection. Equation (2) ignores the 
important fact that, unlike in forced convection, the 
momentum in natural convection is coupled, through 
buoyancy, to thermal energy. Including this fact, later 
studies on natural convection more appropriately 
assume, in terms of the Rayleigh number Ra 

Nu = f (Ra, Pr) (3) 

for this convection. For the asymptotic cases of Pr + 
00 and Pr + 0, equation (3) reduces to 

Nu = f (Ra), Pr -+ co, (4) 

and 

Nu=f(RaPr), Pr+0. (5) 

However, a dimensionless number involving both Ra 
and Pr for any Prandtl fluid and representing the heat 
transfer in natural convection more explicitly than 
equation (3) has apparently remained neglected. The 
prime concern of this section is the development of 
this number which will prove essential for the descrip- 
tion of laminar and turbulent natural convection. 

Let the buoyancy-driven momentum balance be 

FB - F,+Fv (6) 

where FB, FI and F, denote respectively the buoyant, 
inertial and viscous forces. Also, let the thermal energy 
balance be 

QH - QK (7) 

where QH and Qk denote respectively the enthalpy 
flow and conduction. Then, from equation (6) 

F* &I& 
4 + Fv (WFv) + 1 

(8) 

and from equation (7) 

QHIQK. (9) 

Although the force ratios of equation (8) and the 
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energy ratio of equation (9) are dimensionless, they 
depend on velocity which is a dependent variable in 
buoyancy driven flows. For example 

FEi g(ApY* FI PV~ QH PCV~ __- __~ 
F,-pl”Fv p’QK k’ 

1 being a characteristic length, and the other notation 
being conventional. Now, combine equation (9) with 
equation (8) for a result independent of velocity. Thus 

WFV)(QH/QK) _ Ra 
WFV)(QKIQH) + 1 Pr- ’ + 1 

or, 

(10) 

which is the appropriate dimensionless number for 
natural convection in any Prandtl fluid. Accordingly, 
a more explicit relation than equation (3) for heat 
transfer in natural convection is 

Nu = f(l-I,). (11) 

The limits of equation (11) corresponding to Pr + co 
and Pr + 0, respectively, are equations (4) and (5), as 
expected. 

Although the existence of Hr., has never been 
directly shown, the integral solution given by Squire 
[lo] almost five decades ago for the laminar, natural 
convection near a vertical plate leads to an expression 
in terms of Hr.,. Since then the role of TIN in studies 
on natural convection appears to be neglected. 

Because of its importance to the present study, 
Squire’s work is briefly reviewed here following the 
dimensional arguments of Rukenstein [ 1 l] and Arpaci 
and Larsen [ 121. Let the momentum balance be 

u 
u- +v- -g/?AT 

I ;* (12) 

6 being the thickness of the momentum boundary 
layer, I a length characterizing the geometry. Also, let 
the thermal energy balance be 

e e 
u--a- 

l 682 
(13) 

c$, being the thickness of the thermal boundary layer. 
Now, solve equation (13) for velocity, 

I 
u-a-. 

682 
(14) 

Insert equation (14) into equation (12), neglect by 
following Squire the shear stress at C$ relative to that 
at the boundary (Fig. l), and assume 

6 - 68. 

Thus, from equations (12), (13) and (14), 

(15) 

FIG. 1. Squire model for velocity of natural convection. 

or, in terms of IIN, 

The next section is devoted to a thermal microscale in 
terms of l&. 

3. A THERMAL MICROSCALE 

Following the usual practice, decompose the instan- 
taneous velocity and temperature of a buoyancy- 
driven, turbulent flow into a temporal mean (denoted 
by capital letters) and fluctuations 

tl,= U,+u, and 8= @I+@, 

and let U, and 0 be statistically steady. 
For this flow, the balance of the mean kinetic energy 

of velocity fluctuations yields (see, for example. Ten- 
nekes and Lumley [ 131) 

ujg--z+9$+B-E (17) 
J I 

where 

K = :uiui 

is the mean kinetic energy, 

9, = :puj + ~UiUiUj - 2vuiso 

is the mean transport (turbulent flux), 

PB = -g,u,e/o, 

is the buoyant production, 

B = - u,u,s, 

is the inertial production, and 

E = 2VS& 

is the dissipation of turbulent energy. Here g, denotes 
the vector acceleration of gravity and 0, a charac- 
teristic mean temperature to be explained later. 

Also, the balance of the root mean square of tem- 
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perature fluctuations results in 

Uj$(@‘) = - 2 +yo_Ee, (18) 
J I 

where 

a - 
r, = le’u,-u&(:e’) 

is the mean thermal transport (turbulent thermal 

flux), 

Y* = -u’BE 
I 

is the thermal production, and 

ae de 
““=“jqg 

is the thermal dissipation. 
For a homogeneous pure shear flow (in which all 

averaged quantities except Ui and 0 are independent 
of position and in which S, is a constant), equations 
(17) and (18) reduce to 

and 

(-gB) = 9+(-E) (19) 

90 = Eg. (20) 

Equation (19) states that a part of the buoyant pro- 
duction is converted into inertial production while the 

rest of it is dissipated. 
Under isotropy, equations (19) and (20) lead, on 

dimensional grounds, to 

(21) 

and 

(22) 

where n is the Kolmogorov scale and rlo is a thermal 
microscale. A buoyancy-driven flow, say, the natural 
convection above a heated, horizontal plate is 
unstable except for a thin, viscous layer next to the 
plate (the Rayleigh-Taylor instability). Under tur- 
bulent conditions, the thickness of this layer may be 
assumed to be q. In terms of the simple intuitive 
models developed by Corrsin [14] and Tennekes [ 151, 
this dissipation may be estimated as v(u’/s’) (Fig. 2). 
Similarly, the thermal dissipation is to be estimated 
as a(B’/t&. 

Now, following Squire’s postulate for heat transfer 
in buoyancy-driven, laminar flow [equation (15) and 
Fig. 11, assume 

? - Vs. (23) 

That is, the appropriate length scale for equation (21) 
is q. when this equation is to be considered for heat 
transfer. Hereafter, equation (23) is assumed to 
characterize a buoyant sublayer. Accordingly, letting 

:; 7 
FIG. 2. Stable and unstable Tennekes vortex. 

n + qe in equation (21) and inserting u obtained from 
equation (22) into this result yields for any Prandtl 

fluid 

& - (yr4 (gr4, (24) 

or, alternatively, 

3 l/J 

qs*- (1 +Pr)“4 $ 0 H 
(25) 

‘lo being convenient for fluids with Pr > 1 and $ for 
fluids with Pr < 1. 

Now, it is a simple matter to show that 

(26) 

and 

lim Y+O (27) 
pr+co 

which implies, in view of equation (19), 

YB + E. 

Then, from equations (26) and (28) 

(28) 

which is the scale previously introduced by Batchelor 
[S]. Also 

(30) 
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and 

which implies, in view of equation (19), 

Yr+ -+ 9 

and in a viscous layer much thinner than qe 

.Y - E. 

From equations (30), (31) and (32) 

(31) 

(32) 

which is the scale introduced by Oboukhov (3) and, 
independently, by Corrsin [4]. Finally, when Pr - 1, 
because of the equipartition of buoyant production 
into inertial production and viscous dissipation, 
equation (19) becomes 

YB - 2E (33) 
and 

v3 l/4 

lim bvs*+v - T 
Pr- I 0 

which is the celebrated Kolmogorov scale [2]. 
To date the relation between the small scales of 

turbulence and the scales used in the correlation of 
natural and forced convection data appears to remain 
unnoticed. To demonstrate this relation, return to the 
small scale proposed for buoyancy-driven flows, 

(24) 

and assume, on dimensional grounds, 

YB - gu8/0,. (34) 

Let 0, be the temperature of the isothermal ambient. 
Noting 

@,‘=P (35) 

fl being the coefficient of thermal expansion, rearrange 
equation (34) as 

% - SUB0 (36) 

or, with the velocity obtained from equation (22), 

u - air?, 

as 

% - &t%. (37) 

Insertion of equation (37) into equation (24) yields, 
after some rearrangement, 

qs _ (fppr)l13(EJ3. (38) 

Further, assuming the buoyant sublayer to control 
heat transfer, let 

Q-AT (39) 

AT being the imposed temperature difference between 
the wall and ambient. Thus, equation (38) becomes, 
in terms of equation (39), 

or, in terms of a characteristic scale for geometry, I, 

!k_ 1+pr l/3 

1 ( > ~ Ra-l/3 - l-&l/3 

Pr (41) 

where 

Pa = gB ATl3 
va 

is the Rayleigh number. 
In summary, the small (or micro) scales of tur- 

bulence are also the scales characterizing the heat 
transfer in buoyancy driven flows. The apparent 
difference in these scales, as demonstrated by the ther- 
mal scale proposed in this section, comes from the 
fact that the turbulence scale given by equation (24) 
is in terms of the buoyant (production of) energy 
while the equivalent heat transfer scale given by equ- 
ation (40) is in terms of buoyancy (force). The next 
section is devoted to a heat transfer model for buoy- 
ancy-driven flows to be based on the proposed scale. 

4. HEAT TRANSFER 

With the definition of heat transfer coefficient h, 
and that of Nusselt number Nu, 

NU _ &,” _ (qcond)waU 
(42) 

qcond %and 

and with the assumption that near a wall the con- 
duction in buoyancy-driven, turbulent flows is char- 
acterized by thickness of the buoyant sublayer, 

(43) 

where k is the thermal conductivity of the buoyant 
fluid. 

Now, combining equation (42) with equation (41), 
and assuming the heat transfer in buoyancy-driven, 
turbulent flow to be controlled by the buoyant sub- 
layer 

Nu - I-I”‘. N (44) 

The limits of equation (44) for Pr + 0, Pr + 1 and 
Pr-+co 

lim Nu - (RaPr)“3 
P,+ 0 

lim Nu - Gr’13 
F?- 1 (45) 

lim Nu - Ra”3 
Pr-co 

Gr being the usual Grashof number, are well known. 
In the literature, casual use of equation (45) for Pr 1 
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fluids is somewhat surprising. Exceptions are the work 
of Churchill [ 161 and the correlation for vertical cavi- 
ties suggested by Catton [ 171. 

Attempts for correlating experimental data for 
Pr > 1 fluids with equation (45) sometimes lead to an 
exponent less than l/3 for the Prandtl number. Also, 
there appears to be no agreement among exper- 
imentalists on the numerical value of this exponent. 
Equation (44) balanced with equation (45) 

l/3 

Rali3 N Ra”, (46) 

clearly shows that 

n = n(Pr) < l/3 

and explains the reason for disagreement among 
experimentalists on the numerical value of IZ. 

A preliminary attempt by Arpaci and Kabiri [18] 
explains with IIN why some of the assumed (twenty- 
seven!) transitions in the buoyancy-driven, turbulent 
flow between two horizontal plates do not actually 
exist (see Chu and Goldstein [19] and Garon and 
Goldstein [20]). A study on these ‘transitions’ with a 
two-layer heat transfer model including as well a core 
effect is under progress and will be reported later. 

5. CONCLUSIONS 

An attempt is made in this study to show the 
relation between the heat transfer correlations and the 
small (micro) scales of turbulence. A thermal micro- 
scale depending on the buoyant production of tur- 
bulent energy is proposed for any Prandtl fluid. The 
limits of this scale for Pr + 1, Pr + 0 and Pr + 03 are 
shown to be the Kolmogorov, Oboukov-Corrsin and 
Batchelor scales, respectively. Expressing the pro- 
posed scale in terms of the buoyancy (force) rather 
than the buoyant production (of energy), an alter- 
native form is given for this scale. The buoyant 
sublayer which controls the heat transfer is assumed 
to be characterized by this scale. A model resting on 
the proposed scale is then introduced for heat transfer 
in buoyancy-driven flows. The limits of the model for 
Pr + 1, Pr -+ 0 and Pr + co turn out to be the well- 
known heat transfer correlations. Also, the model 
appears to eliminate most of the assumed transitions 
in buoyancy-driven flow between horizontal plates. 

The small scales of isotropic and anisotropic tur- 
bulence are found to be different. The small scales of 
homogeneous turbulence are expected to be identical, 

in the dimensional sense, to those of nonhomogeneous 
turbulence. 

It is shown that a simple intuitive heat transfer 
model can be constructed without reference to an eddy 
diffusivity which does not have any fundamental base. 
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FORMULES DE MICRO-ECHELLES DE TURBULENCE ET DE 
TRANSFERT THERMIQUE 

R&nn&La petite echelle de structure des Bcoulements forces turbulents developpee apres Taylor et 
Kolmogorov est ttendue au cas des Ccoulements naturels libres. Une microechelle thermique 

est proposee. Ici Pr = v/a represente le nombre de Prandtl et P, la production d’energie turbulente. 
Trois limites de cette Bchelle sont respectivement les echelles de Kolmogorov, d’Oboukhov-Corrsin et de 
Batchelor. Quand elle est exprimee en fonction de la force d’Archim2de plutot que de la production 
d’energie, l’echelle proposee devient 

‘Is N (5$J’3(&y”_ 

Relativement a une Cchelle de longueur 1 caracteristique de la geometric, 

q0/l N II;“, 

Oil 

est le nombre adimensionnel fondamental et Ra est le nombre de Rayleigh. Un modtle de transfert 
thermique base sur ce nombre adimensionnel explique pourquoi la formule classique 

Nu N Ra” 

conduit a un exposant inferieur a l/3 quand on considtre le mouvement entre deux plans horizontaux. 

TURBULENZKENNZAHLEN UND WARMEUBERGANGSBEZIEHUNGEN 

Zusammenfassung-Die nach Taylor und Kolmogorow entwickelte Mikrostruktur erzwungener tur- 
bulenter Striimungen wird fiir freie Konvektionsstromungen erweitert. Eine thermische Kennzahl 

Vs N (I%):‘(!&~” 

wird vorgeschlagen. Darin bezeichnet Pr = v/a die Prandtl-Zahl und 9)n die Erzeugung an turbulenter 
Auftriebsenergie. Diese Kennzahl hat 3 Grenzfalle : die Kolmogorov-, die OboukhovCorrsin- und die 
Batchelor-Zahl. Formuliert man die Kennzahl mit Hilfe der Auftriebskraft-anstatt der Auftriebsenergie- 
so ergibt sich 

rIs N (‘fpf);($$ 

oder bezogen auf eine fur die Geometrie charakteristische Lange I 

?Jo/l - IIN “3, 

wobei 

Ra 

die grundlegende dimensionslose Zahl der Auftriebsstriimung und Ra die Rayleigh-Zahl ist. Ein War- 
meiibergangsmodell, das auf dieser dimensionslosen Zahl basiert, erklart, warum die bekannte Korrelation 
fur freie Konvektion 

Nu-Ra” 

bei Auftriebsstriimungen zwischen 2 horizontalen Platten auf einen Exponenten kleiner als l/3 fiihrt. 
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MMKPOMAClllTA6bI TYPGYJIEHTHOCTM M COOTHOLUEHMR AJIR TELJIOnEPEHOCA 

AmoTauw-Teopm MenKOMaCUITa6HblX BblHyTneHHbIX Typ6yJIeHTHbIX TeveHkiii, pa3pa60TaHHas TeR- 

WpOM M KonMoropoeblM, IlpHMeHWTC~ K Te'leHW~M, BbI3BaHHbIM IlOnbeMHOii CtinOk npenJlOX(eH le"- 

:loBoi? MMKpOMacL"Tk,6 

,,” 4 (!$)‘:‘(!g)‘:“. 

rue Pr = v/n 9kicno npaHnTnR,d.JP,-re~[epMposaHMe nonaeMHoA TypGyneHrHoA 3Heprm.Tpem npe- 

nenam 3Toro ~acuma6a IIBJIRIOTCII rpaHAUbl KOnMOrOpOBa, 06yxoBa-Kopcma H 63TqenOpa, COOT- 

BeTCTBeHHO. npll BblpameHMM Il~ellJlO~eHHOrO MacmTa6a 'lepe3 IIO,I,beMHyH,cHny,a He reHepupOBaHMe 

nonaekmoti weprnki. OH m4eeT cnenykowiA BHD 

Ra 

RBnReTCIl @yHEiMeHTkinbHbIM 6e3pd3MepHblM WCnOM IL"8 TeqeHMii. BbIJBaHHblX nOn%eMHOfi CWIOfi, a 

Ru-vwc:lo hIe% Monenb TennonepeHoca.ocHoBaHHan ~a 3~0~ 6espa3MepHoM Wicne,o6ImHaeT TOT 

@KT, "OWMy XOpO,UO M3BeCTHOe BblpameHMe JUIR eCTeCTBeHHOii KOHBeKUMM. Nu - Ra”, "pclBOnllT K 

noKa3aTe.m creneHu MeHee 1/3,Kornd paccMaTpmaeTca cnyvaii TeveHm Mexny neyhm ropesoHTanb- 

HblMH "3aCTMHaMA. 


